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Abstract

An Efficient Computational Alternative To
• ‘Using Linear Programming to Design

Oil Pollution Detection Schedules’

by

Lee E. Daniel, Jr.
Sandal S. Hart
Thom J. Hodgson

In Olson, Wright, and McI(efl’s recent paper on the design of oil pollution

detection schedules, an interesting and inventive development and application

of a Markov Decision Process was presented . Optimal schedules for patrol

flights of surveillance aircraft were found using linear programming. In this

paper the model has been reformulated as a discrete time semi—Markov process.

• Significant computational advantages accrue from this alternative approach.
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Olson, Wright, and McKell [6] ,  recently reported on a very interesting

application of the linear programming formulation for Markov decision processes.

The U. S. Coast Guard Is charged with the r~sponsibility for environmental

i rotection in our coastal areas. Specifically , they are chartered to operate

electronic sensor equipped patrol aircraft whose mission , in this case, is the

detection and prevention of oil and hazardous material pollution in coastal and

off shore areas. A search model was developed for scheduling patrol flights.

This model is part of a system called Pollution Detection and Prevention System

(PDAPS). The objective of the model is to find a flight plan or schedule which

maximizes the expected number of pollution detections per patrol flight. Each

flight may cover a given number of known geographical sectors where pollution

is likely to occur. The probability of a pollution incident occurring in a

geographical area is obtained from historical pollution statistics, shipping

statistics , and pollution prediction models which are contained in PDAPS. It may

not be possible to search all sectors of interest in one flight. Of those sectors

which are searched, there may be multiple possible flight patterns depending on

physical properties of the sector and flight altitude. For example , three flight

patterns are shown for a sector in figure 1. The detection probability for a

sector varies according to the pattern flown.

In addition to maximizing the expected number of pollution incidents detected ,

the pollution flight schedules include a randomness factor in order to have a

preventive effect on intentional polluters. By this we mean that schedule

generation is performed in two stages. First , an optimal “expected value”schedule is

generated. Second , each time an actual flight is made, a schedule is generated

randomly from the “expected value” schedule. The amount of “randomness” In the

actual schedule is related to a randomness factor c , to be defined shortly.
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States of the system, for modelling purposes, are described by a 3—tuple

in which the first entry designates the geographical sector, the second indicates

the sector exit point (I.e. the flight pattern used to search the sector); and

the third gives the remaining flight time. It is clear that the state defini-

tion has the Markov property, in that for any given system state (i.e., the

location of the aircraft and the remaining f light time) the definition includes

the information necessary to plan the rest of a flight. The reader may note that

tne definition, however, does allow revisiting of geographic sectors (i.e.,

subtours). This shortcoming is easily eliminated in practice. The reader Is

referred to [5, 6] for more detail. Included in the set of states are states

representing both the beginning and the end of the flight (normally the same

location, but not necessarily).

We now move to a linear programming formulation of the patrol flight

scheduling problem. The objective of the linear program is, for a given ran-

domness factor c, to maximize the expected number of pollution detections.

Note that in the following discussion the 3—tuple system state variable is

represented by a single dimensioned variable. Define S~ as the set of possible

successor states associated with state i. If S denotes the set of all states then

S = S1 u S2 u •
~~~
. u where N is the number of states. Let M denote the

total flight time available for a patrol mission. T
jj is the total flight

time associated with transition from state I to state j. Pd
1~ is the

probability of detecting a pollution incident associated with the transition

from state i to state j. The introduction of randomness into the flight

schedules is accomplished In the following manner. Let qjj(a) be the

..‘røb;~bility of going to state j given that the current state is I and it is

desired to transition to state a. This is related to the randomness factor r as

follows:

3
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1) — cardinality of S1
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~jj 
(a) = 1 — c i a

N(Si) 
— 1 ~~ ~ 

S
~
, j ~~a.

Note that

c~ = q
1~
(a)Pd

1~

represents the expected number of detections from state I given that the decision • I
is to go to a. Let Zia be the probability of being in state i and choosing 

to go

to state a.

The final linear programming model (equivalent to model II in [6]) is:

Find {z
1
) ICS, a€S1 

in order to

max ~ c~ 2ia’i~ S aeS~

Subject to

~ 
Z
i

= l
iES a€S

~ z~~(61~ 
- q

1~
(a)) = 0, all j€S ,

i€S aeS~

where

{o 
, ~~~~~

1 , i = j

It should be noted that the linear programming formulation of Olson, et al. [6],

is equivalent to that of Derman [1], Wolfe and Dantzig [8], and Manne (4] for •
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Markov decision processes. The structure of the linear program insures that one

and only one policy is chosen for each state of the system . The execution time

for solving this system as a linear program is quite large, particularly for

problems of practical size (see Table 1).

In reviewing the process, it can be observed that, disregarding the

remaining flight time, the process of going from sector to sector is Markovian.

Therefore, the process can be viewed as a discrete time semi—Markov process

where the state of the system is described by a 2—tuple in which the first

entry is the geographic sector and the second indicates the sector exit point

(flight pattern). The time between transitions is the transit time between

se exit points. The semi—Markov structure results in a considerable

n in the number of states of the system. Since the problem has a finite

ing horizon (length of the flight), dynamic programming appears to be the

appropriate solution technique. From Howard [3J, the general form of the finite

horizon, discrete time semi—Markov dynamic recursion is (ignoring boundary conditions):

N n
v~(n) = max {c~ + ~~ q jj (a) ~~ V~~(fl — m) h~j

(m)}~ (1)

where 

a j=l m=l

v1(n) Is the maximum expecte l number of pollution detections over the
remaining n time units given the process starts in state I.

h~~ (m) is the probability that tn time units will be required to go
from state I to state j when it is desired to transition to state a.

Note that the state designations i and j now refer to the redefined

2—dimensional states of the semi—Markov model. For this particular problem ,

the inner sum over the transition time probabilities in (1) has only one term since

the transition (flight) time between states is assumed to be deterministic. Hence,

there is a matrix of transition times from state I to state j (tjj)~ rather

than one of functions of transition times from state I to state 
~ 

(hjj(m)).

• Equation (1) simplifies to the following form:
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Table 1. Computation Times for Linear Program***

Length of
flight Number of Computation Time*
(minutes) Markov States (Seconds)

** 66 21.

120 341 552.

420 1565 7815.

[* CPU Seconds on CDC 6000 Series Computer [5]]
[** Not able to determine]
[*** Linear Programs run using the CDC OPTIMA System]

6



N
• v1(n) 

= max {c~ + ~ q1.(a)v.(n — t . . ) } ,  (2)
a j 1  ~

• where ‘ij 
Is the t ransition time from s tate  I to s ta te  j. The procedure Is

i n i t i a t ed  by setting

v1(O) = —~~~~, I ~ the f inal (or home) state ,

v1(O ) 0 , I = the f inal  (or home) s tate , and

v1(n) = —~~~~, for negative values of n

The procedure is terminated when v1(M) is calculated , whe re I is the initial

(o r beginning) state and M is the length of the f l igh t .

It should be noted that the seml—Markov formulation is equivalent to that

of Olson , et al. , and the state reduction techniques discussed in [5 , 6 ] apply

to this fo rmulation . Computational advantages accrue from the s ignif icant

reduction in the number of states in the system and the f in i te  horizon dynamic

programming approach (as opposed to the infinite horizon LP approach).

Equivalence of size, for  comparison of computa tional ef f iciency of the

semi—Markov and Markov formulations , is easily established.

• Certain entries of the v~ (n) matrix can be determined to be infeasible (i.e., it

is either impossible to reach state i from the start point in n time units, or

it is impossible to reach the finish poin t from state i in the f l ight time re-

maining). In addition , it Is possible to limit , artificially,  the time window

within which each sector can be visited. For instance , due to operational con—

sMe rat ions associated with a given data set to be used as input for  the dynamic

program , it may be apparent that a cer ta in  geographic sector can only be visited

earl y in the flight , if at all. It would make sense , then , to declare those

entr ies of v
1(n) associated with the geograp

hic sec tor to be infeasible for t ime

pe riods (n) greai. -~r tha n the latest reasonable visitation time . The remaining

(feasible)  elements of v i (n) each represent states of the system for the Markov

fo rmulation . Therefore , counting the feasible entries of the v~ (n) matrix gives

thi s equivalent  number of s ta tes  of the Markov problem for  a g iv en serni—Markov

problem.

7
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The data used by Olson et al., was not available. Therefore , a problem

was formulated using realistic data from [7]. The s,ctors considered were po—

1 ten tial oil well dri l l ing sites and sh ipp ing lanes in the Gulf of Mexico off the

Fl or ida coast. The aircraft was assumed to fly at a speed of 130 knots. Flight

patterns were designed for each sector and the detection probabilities were

randomly generated . There were 35 secto:s which , when combined with the various

flight patterns , resulted in 111 semi—Markov states. Time was discretized ,

as In [5 , 6] ,  in minutes. The equivalent number of Markov states de-

pended on the length of the flight and the extent to which various state re-

• duction techniques [5, 6] were app lied. The computationa... results for the

various runs made are disp layed in Table 2. In addition 1 the computational

resul ts are incl uded in Figure 2 for  compar ison wi th the linear programming

resul ts. (Note that figure 2 is a semI—log graph).

The relative difference in computation times is quite large . it might

be irgued that some of the difference can be attributed to the relative

speeds of the CDC 6000 series computer used for the Linear Program and the

IBM—370 model 165 computer used for the Dynamic Program , bu t the compu tational

differences (more than 4 orders of magnitude) are large enough to absorb

eas ily any differences in mach ine speed. For the problem at hand , the power

of the discrete time semi—Markov process as a modelling tool is that it brings

for th the underlying structure in a more straightforward fashion . This allows a

simp lif led computational approach to the optimization and results in the

• computational efficiencies observed .

The computer storage requirements for the experimental dynamic program code

are reasonabl y modest , all thi ngs considered . The 6 h r .  (360 minute) flight

problem (the largest we ran) requ ires less than 260K bytes of core. No addit ional

off—line storage is necessary. Rather large efficiencies (~ 5O%) could he

8



affected through list processing to eliminate storage requirements for

infeasible entries of v1
(n), but that was not implemented in the code.



-~~~~ • •

~ I

Table 2. Computation Times for Dynamic Prograln**

Length of
Number of Semi— flight Equivalent Number Computation Tlme*
Markov States (minutes) of Markov States (Seconds)

111 180 1076 .396

111 180 2914 1.151

ill 360 4120 1.694

111 360 7303 2.626

ill 360 14592 7.125

[*CpU Seconds on IBM 370—165 computer ]
[** Dynamic Program coded in FORTRAN IV]
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